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One of the main goals in the study of color symmetry is to classify colorings of

symmetrical objects through their color groups. The term color group is taken to

mean the subgroup of the symmetry group of the uncolored symmetrical object

which induces a permutation of colors in the coloring. This work looks for

methods of determining the color group of a colored symmetric object. It begins

with an index n subgroup H of the symmetry group G of the uncolored object. It

then considers H-invariant colorings of the object, so that the color group H*

will be a subgroup of G containing H. In other words, H � H*
� G. It proceeds

to give necessary and sufficient conditions for the equality of H* and G. If H*
6¼

G and n is prime, then H* = H. On the other hand, if H*
6¼ G and n is not prime,

methods are discussed to determine whether H* is G, H or some intermediate

subgroup between H and G.

1. Introduction

Colorings of a symmetrical object reveal properties of the

object which may not be immediately recognizable. For

example, Fig. 1 exhibits a coloring of the vertices of a regular

icosahedron that reveals how the vertices may be partitioned

to form four equilateral triangles. In the figure, vertices of the

same color form an equilateral triangle.

Color symmetry can also give a visual representation of

some group-theoretical ideas. For instance, in a colored

symmetrical object, one can talk of the stabilizer of a certain

color with respect to the symmetry group of the object.

Roth (1982) presented the basic ideas about perfect and

non-perfect colorings, and gave some simple examples and

illustrations. One of the topics he discussed in his paper is the

idea of equivalent colorings, which he illustrated in Roth

(1985) where he colored a pattern with symmetry group p4m.

Schwarzenberger’s (1984) work is a compilation of more

than 50 years’ worth of results in color symmetry, including

those in Roth (1982). In the paper, he mentioned some of the

fundamental results of color symmetry, and went on to say that

even with only a few results, color symmetry has produced a

lot of articles, especially in crystallography journals. He also

said that the development of color symmetry reflects the

development of mathematics in general, and may be useful

when studying the history of mathematics.

Senechal (1988) mentioned some of the applications of

color symmetry, more specifically in the study of crystal

formation, along with some of the open problems. She stated

that the basic problem has always been the classification of

colorings. One of the classification methods she proposed was

the classification using the subgroup of the symmetry group of

the uncolored object which induces a permutation of colors in

the coloring. This paper makes use of this classification
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method and refers to this subgroup as the color group of the

coloring. Senechal noted, however, that such a method is not

enough to completely classify colored patterns, as two

completely different colorings may still have the same color

group.

De Las Peñas & Felix (1997) considered colored patterns

where the color group is a subgroup of the symmetry group of

the uncolored pattern of index at most 3. The paper used a

framework (De Las Peñas et al., 1999) where the uncolored

pattern is the G-orbit of a subset S of a fundamental domain

for the symmetry group G. In this case, the elements of the

G-orbit of S may be labeled using the elements of G, and the

stabilizer subgroup of S in G is trivial. In a subsequent paper,

colorings based on a subgroup of index 4 in the symmetry

group were studied (De Las Peñas & Felix, 2003).

Succeeding papers (De Las Peñas et al., 2006, 2011; Gozo,

2010) reduced the restrictions on the patterns being colored.

These papers considered patterns whose tiles did not form a

single G-orbit. This problem was attacked by coloring each

G-orbit separately. More importantly, they also considered

patterns where the tiles were not subsets of a fundamental

domain of the symmetry group G, so that the stabilizer

subgroup of a tile need not be trivial.

For instance, a method for obtaining colorings of tilings of

the hyperbolic plane where the associated color group is equal

to the full symmetry group was discussed in De Las Peñas et al.

(2006). Such colorings are called perfect colorings. On the

other hand, a method for identifying the color groups arising

from index-2 subgroups of symmetry groups was outlined in

De Las Peñas et al. (2011). This method was then applied to

tilings of the hyperbolic plane to obtain various colorings,

some of which are perfect, and others with associated color

groups of index 2 in the symmetry group (called semi-perfect

colorings; Felix & Loquias, 2008).

As an extension, Gozo’s dissertation (Gozo, 2010) provided

a similar method for determining the color groups arising from

index-3 and -4 subgroups of symmetry groups. Here, the

colorings obtained have different associated color groups, with

indices ranging from 1 to 4.

In this paper, we give a framework for determining the

color group associated with colorings arising from index-n

subgroups of symmetry groups. The main result of the paper is

theorem 2, which states how to determine if a coloring arising

from a subgroup H of any index in G is perfect. x3 also

discusses how this theorem is useful to identify the color group

of a given coloring, and how theorem 2 completely solves the

problem of determining the color group when the index of H

in G is prime. We use index-5 subgroups as examples for the

prime case, while index-6 subgroups are used for the case

where n is not prime. x4 provides examples of colorings arising

from such subgroups of various symmetry groups, ranging

from colorings of regular polygons to colorings of tilings of the

hyperbolic plane.

2. Preliminaries

Let G be the symmetry group of a set X. Consider a

partition of X given by P ¼ fP1;P2; . . . ;Png. The partition P is

said to be a coloring of X, where each Pi is called a color. To

put it another way, two elements of X are assigned the same

color if and only if they belong to the same set Pi in the

partition P.

An element g 2 G is said to permute the colors or induce a

permutation of colors in a coloring P of X if g leaves the

partition P invariant, i.e. gP ¼ P. The set of elements of G

which induce a permutation of colors form a subgroup of G.

This subgroup fg 2 G j gP ¼ Pg is called the color group

associated with the coloring P. If the color group is G, we say

that the coloring is perfect. Otherwise, the coloring is said to be

non-perfect.

Fig. 2 shows eight isosceles right triangles which are

arranged to form a square. When uncolored, the symmetry

group G of the set of eight triangles is isomorphic to D4, the

dihedral group with eight elements. It is easy to check that the

color group of the coloring in Fig. 2 is G, so that the coloring is

perfect. For example, the 90� counterclockwise rotation about

the center of the square sends green to blue, blue to red, red to

yellow and yellow back to green. On the other hand, the

reflection along the horizontal line passing through the center

interchanges green and blue, as well as red and yellow.

Fig. 3 makes use of the same set of eight triangles with

different colors. In this case, the color group is not G. Take, for

example, the reflection along the diagonal going through the

lower left corner and the upper right corner of the square.

Applying this reflection, we can see that some green triangles

go to green triangles, while other green triangles go to red

triangles. This means that the said reflection does not induce a

permutation of colors. The color group of the coloring is the

research papers

Acta Cryst. (2015). A71, 216–224 Felix and Junio � Color groups from symmetry groups 217

Figure 2
A perfect coloring.

Figure 3
A non-perfect coloring.

Figure 1
A coloring of the vertices of a regular icosahedron.



subgroup of G generated by the half-turn about the center of

the square and the reflection along the horizontal line.

3. Framework for the colorings

Let G be the symmetry group of a set X . The set X will be

partitioned into G-orbits, and each G-orbit will be colored

separately.

Let x1 2 X , and take X ¼ Gx1 ¼ fgx1 j g 2 Gg, the G-orbit

of x1, so that G acts transitively on the set X. We have the

following framework for coloring:

(i) A coloring of X for which G permutes the colors satisfies

the following property: ‘for every x 2 X, there exists H � G

such that StabG x � H and the coloring is described by the

partition fgHx j g 2 Gg’.

(ii) If x 2 X and H � G such that StabG x � H and

½G : H� ¼ n, then P ¼ fgHx j g 2 Gg is an index-n coloring of

X for which G permutes the colors.

Now, let H<G, where ½G : H� ¼ n. In this case, X will be

partitioned into m H-orbits with 1 � m � n so that X ¼

Gx1 ¼
Sm

i¼1 Hxi, where xi 2 X, and xk =2 Hxj whenever j 6¼ k.

We look at colorings of X arising from the subgroup H and the

color groups associated with the said colorings.

We begin with H-invariant colorings of X. Because

of the first statement of the framework above, any

H-invariant coloring of X may be written in the form P =Ss
i¼1fhJiXi j h 2 Hg such that 8x 2 Xi, StabH x � Ji � H, for

1 � i � s, and where JiXi is defined as JiXi :¼
S

x2Xi
Jix.

We now formulate a general theorem for determining

whether the color group is G. Partition fxjg
m
j¼1 as

Ss
i¼1 Xi,

where 1 � s � m, and without loss of generality, suppose

xi 2 Xi for all i; 1 � i � s. Form the partition P of X given by

P ¼
Ss

i¼1fhJiXi j h 2 Hg such that 8x 2 Xi, StabH x � Ji � H,

for 1 � i � s. A partition of this form will produce a coloring

of X with c colors, where c is given by c ¼
Ps

i¼1 ½H : Ji�: This is

due to the fact that each fhJiXi j h 2 Hg will give rise to a

number of colors equal to the index of Ji in H.

Note that, for partitions of this form, if h0 2 H, we have

h0P ¼
[s

i¼1

fh0hJiXi j h 2 Hg

¼
[s

i¼1

fh00JiXi j h
00 2 Hg

¼ P;

so that P is H-invariant, i.e. for all h 2 H, hP ¼ P. Therefore,

H is always a subgroup of the color group of P. We will now

call the color group H�. We have H � H� � G:
We will make use of the following lemma.

Lemma 1. Let G be a group acting on a set X, and let g 2 G,

x1; x2 2 X . If gx1 ¼ x2, then StabG x2 ¼ gðStabG x1Þg
�1.

Proof. First, we show that StabG x2 � gðStabG x1Þg
�1. Let

g0 2 StabG x2, i.e. g0x2 ¼ x2. Since gx1 ¼ x2, then g0ðgx1Þ ¼ gx1.

Therefore, g�1g0gx1 ¼ x1 so that g�1g0g 2 StabG x1. Therefore,

g0 2 gðStabG x1Þg
�1.

Next, we show the reverse inclusion, gðStabG x1Þg
�1

� StabG x2. Let g0 2 gðStabG x1Þg
�1. Therefore, g0 is of

the form gg�g�1, where g� 2 StabG x1. So we have

g0x2 ¼ gg�g�1x2 ¼ gg�x1 ¼ gx1 ¼ x2. Hence, g0 2 StabG x2 and

so gðStabG x1Þg
�1 � StabG x2. &

Next we construct a complete set of right coset repre-

sentatives for H in G. Fix y1 ¼ e. Since G acts transitively

on X, we can find y2; . . . ; ym 2 G\H so that yix1 ¼ xi for

i ¼ 1; . . . ;m. Note that Hyj 6¼ Hyk for 1 � j; k � m. Indeed, if

Hyj ¼ Hyk (with j 6¼ k), then Hyjx1 ¼ Hykx1, and so

Hxj ¼ Hxk. Thus, xk 2 Hxj, a contradiction. Extend the set

fy1; . . . ; ymg to a complete set fy1; . . . ; ym; gmþ1; . . . ; gng of

right coset representatives of H in G.

Let mþ 1 � j � n. We have gjx1 ¼ hjxi for some hj 2 H

and where 1 � i � m. Set yj :¼ h�1
j gj 2 Hgj, so that Y ¼

fyig
n
i¼1 is a complete set of right coset representatives of H in G

and yjx1 ¼ xi for some i; 1 � i � m.

Partition Y as Y ¼
Ss

i¼1 Yi where Yi ¼ fyj 2 Y j yjx1 2 Xig.

Note that this partition is induced by the partition of fxjg
m
j¼1.

Let Si ¼
S

y2Yi
Jiyy�1

i , for 1 � i � s.

Theorem 2. In a coloring of X induced by the partition

P ¼
Ss

i¼1fhJiXi j h 2 Hg given above, H� ¼ G if and only if

S1 � G and 8y 2 Yi, yS1y�1 ¼ Si, for 2 � i � s.

Proof. Assume that H� ¼ G. First, we show that S1 � G.

Let y 2 Y1, and so yx1 2 X1. Since H� ¼ G, we have

yP ¼ P.

Now, yx1 2 yJ1X1, but since yx1 2 X1, we also have

yx1 2 J1X1. Since yP ¼ P, we obtain yJ1X1 ¼ J1X1.

We show that S1 ¼ StabG J1X1. Let g 2 S1. Then g is of the

form jyy�1
1 , where j 2 J1 and y 2 Y1. Since y1 ¼ e, then g ¼ jy.

We have gJ1X1 ¼ jyJ1X1 ¼ jJ1X1 ¼ J1X1. Therefore, g 2

StabG J1X1, and so S1 � StabG J1X1.

We now show the reverse inclusion StabG J1X1 � S1. Let

g 2 StabG J1X1, i.e. gJ1X1 ¼ J1X1. We have gx1 ¼ jx for some

j 2 J1; x 2 X1. Now, since g 2 G, then g is of the form hy for

some h 2 H and y 2 Y , so we have hyx1 ¼ jx. We now proceed

to show that h 2 J1 and y 2 Y1. We have the following equa-

tion:

yx1 ¼ h�1jx: ð1Þ

Now, h�1j 2 H, so yx1 2 Hx. But from the selection of y’s, we

have

yx1 ¼ x: ð2Þ

But x 2 X1 and, therefore, y 2 Y1.

From equations (1) and (2), we get x ¼ h�1jx, or equiva-

lently, j�1hx ¼ x. Therefore, j�1h 2 StabH x. Since x 2 X1,

from the given we have StabH x � J1. Therefore, j�1h 2 J1, so

h 2 J1.

We have now shown that g is of the form hy, where h 2 J1

and y 2 Y1. Again, since y1 ¼ e, then g ¼ hyy�1
1 . Therefore,

g 2 S1 and so StabG J1X1 � S1. Hence, S1 ¼ StabG J1X1 and

S1 � G.

Next we show that 8y 2 Yi, yS1y�1 ¼ Si, for 2 � i � s. Fix i.

Let y 2 Yi, so that yx1 2 Xi, and therefore, yx1 2 JiXi.
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However, yx1 2 yJ1X1 as well. Since H� ¼ G, then yP ¼ P.

We have

yJ1X1 ¼ JiXi: ð3Þ

From lemma 1, we get StabG JiXi ¼ yðStabG J1X1Þy
�1. It has

already been proven that S1 ¼ StabG J1X1, so we have

StabG JiXi ¼ yS1y�1: ð4Þ

It remains to show that Si ¼ StabG JiXi.

First, we show that Si � StabG JiXi. Let g 2 Si. Then g is of

the form jyy�1
i , where j 2 Ji and y 2 Yi, so we have

gJiXi ¼ jyy�1
i JiXi

¼ jyJ1X1 ½as a result of ð3Þ�

¼ jJiXi

¼ JiXi:

Therefore, g 2 StabG JiXi.

Next, we show the reverse inclusion StabG JiXi � Si.

Let g 2 StabG JiXi, i.e. gJiXi ¼ JiXi. Therefore, for some

j 2 Ji; x 2 Xi:

gxi ¼ jx: ð5Þ

Now, G ¼
S

y2Y Hy, and therefore, Gy�1
i ¼

S
y2Y Hyy�1

i . But

Gy�1
i ¼ G, so the set Yy�1

i ¼ fy1y�1
i ; . . . ; yny�1

i g is also a

complete set of right coset representatives of H in G. There-

fore, g is of the form hyy�1
i for some h 2 H and y 2 Y .

We now proceed to show that y 2 Yi and h 2 Ji. From

equation (5), we get hyy�1
i xi ¼ jx, or equivalently,

yx1 ¼ h�1jx: ð6Þ

Now, h�1j 2 H, so yx1 2 Hx. But from the selection of y’s, we

have

yx1 ¼ x: ð7Þ

But x 2 Xi, so we get y 2 Yi.

From equations (6) and (7), we get x ¼ h�1jx, or equiva-

lently, j�1hx ¼ x. Therefore, j�1h 2 StabH x. Since x 2 Xi, then

StabH x � Ji, and so j�1h 2 Ji. Therefore, h 2 Ji.

We have now shown that g is of the form hyy�1
i , where h 2 Ji

and y 2 Yi. Therefore, g 2 Si, and so StabG JiXi � Si. We

conclude that Si ¼ StabG JiXi. From this fact and equation (4),

we have Si ¼ yS1y�1.

Conversely, suppose that S1 � G and 8y 2 Yi, yS1y�1 ¼ Si,

for 2 � i � s. Note that since S1 � G, then 8y 2 Y1 � S1,

yS1y�1 ¼ S1 as well. That is, the second condition also works

when i ¼ 1. From the definition of S1, we have

S1x1 ¼
[

y2Y1

J1yx1 ¼ J1X1:

Similarly, for 2 � i � s we have

Sixi ¼
[

y2Yi

Jiyy�1
i xi ¼

[

y2Yi

Jiyx1 ¼ JiXi:

So we rewrite P as follows:

P ¼
[s

i¼1

fhJiXijh 2 Hg ¼
[s

i¼1

fhSixijh 2 Hg:

Since S1 � G, then 8y 2 Yi, Si ¼ yS1y�1 is also a subgroup of

G for 2 � i � s. Also, yy�1
i 2 Si for all y 2 Yi, so Siyy�1

i ¼ Si.

We then have

P ¼
[s

i¼1

fhSixi j h 2 Hg

¼
[s

i¼1

fhSiyy�1
i xi j h 2 H; y 2 Yig

¼
[s

i¼1

fhSiyx1 j h 2 H; y 2 Yig:

Now, 8y 2 Yi, yS1y�1 ¼ Si, for 1 � i � s, or equivalently,

yS1 ¼ Siy. We get

P ¼
[s

i¼1

fhSiyx1 j h 2 H; y 2 Yig

¼
[s

i¼1

fhyS1x1 j h 2 H; y 2 Yig

¼ fhyS1x1 j h 2 H; y 2 Yg:

But Y is a complete set of right coset representatives for H in

G. Therefore

P ¼ fgS1x1 j g 2 Gg:

So if g0 2 G, then g0P ¼ P. Therefore, H� ¼ G. &

Theorem 2 is a generalization of theorems formulated in De

Las Peñas et al. (2011) and Gozo (2010). For instance, if H is of

index 2 in G and Y ¼ fe; yg, then theorem 3 from De Las

Peñas et al. (2011) is obtained by choosing S1 ¼ J1 and S2 ¼ J2

in theorem 2. Note that since S1 ¼ J1, then S1 is automatically

a subgroup of G, so the first condition need not be written in

this case.

As an example, we consider the case where ½G : H� ¼ 6 and

X ¼ Gx1 ¼ Hx1 [Hx2 [Hx3 [Hx4. Let y1 ¼ e (so that

y1x1 ¼ x1). Since x2; x3; x4 2 X ¼ Gx1, then we can find

y2; y3; y4 2 G\H such that y2x1 ¼ x2, y3x1 ¼ x3 and y4x1 ¼ x4.

Note that Hy2, Hy3 and Hy4 are different right cosets because

if Hyj ¼ Hyk (with j 6¼ k), then Hxj ¼ Hxk, and so xk 2 Hxj, a

contradiction. Take g5; g6 2 G such that y1; y2; y3; y4; g5 and g6

form a complete set of coset representatives of H in G.

Since Gx1 ¼ Hx1 [Hx2 [Hx3 [Hx4, then for j ¼ 5; 6,

gjx1 ¼ hjxi for some hj 2 H and i; 1 � i � 4. Take yj :¼
h�1

j gj 2 Hgj, so that Y ¼ fyig
6
i¼1 is a complete set of right coset

representatives of H in G, and yjx1 ¼ xi for some i; 1 � i � 4.

Table 1 summarizes the possible Xi’s and the corresponding

sufficient and necessary requirements so that H� ¼ G.

We now proceed to the discussion on how to implement

theorem 2 to obtain the color group of a coloring satisfying the

requirements given previously. The process for determining

color groups is as follows. They are similar to those used by

Gozo (2010).

(i) Take H<G such that ½G : H� ¼ n.
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(ii) Color X using a partition P as was used in theorem 2, so

that H � H� � G.

(iii) Use theorem 2 to determine if H� ¼ G.

(iv) If H� 6¼ G and n is prime, then H� ¼ H.

(v) If H� 6¼ G and n is not prime, use the right coset

representatives of H in G to determine H�.

The idea behind the fifth step is as follows. If H� 6¼ G, we

consider the right coset representatives of H in G. Here, we

choose one of the right coset representatives to be e, the

identity. Since H� 6¼ G, then not all of the right coset repre-

sentatives will induce a permutation of colors, and we proceed

by checking which of them do.

If a right coset representative y induces a permutation of

colors, then the whole coset Hy induces a permutation of

colors, since all the elements of H do by default, since P is

H-invariant. To obtain H�, we simply take the union of those

right cosets whose representatives permute the colors. If none

of the five non-identity right coset representatives permute the

colors, then H� ¼ H.

Note that when the index of H in G is a prime number,

theorem 2 completely solves the problem of determining the

color group, due to the fact that there can be no intermediate

subgroups between H and G when the index of H in G is

prime. Thus, if the color group is not G, then it is definitely H.

4. Examples

The following examples show different types of colorings, with

color groups of varying indices in the symmetry group of the

object. For each example, written are the subgroup H of the

symmetry group G, the set Y, which is a complete set of right

coset representatives of H in G which satisfies the require-

ments given in the previous discussions, the partition P used to

color the object and a brief discussion on the color group H�

and how it was obtained. For the first few examples, the

symmetry group G acts transitively on the set X of objects to

be colored. We write X ¼ Gx1, where x1 is as indicated. On

the other hand, for the last example, the symmetry group G

does not act transitively on the set. There we illustrate some

interesting observations on such colorings.

4.1. Regular icosahedron

We begin with Fig. 1, the regular icosahedron shown in x1.

A regular icosahedron has symmetry group G ffi A5 
 C2 of

order 120. We will take the set X to be the set of vertices of the

icosahedron, which form one orbit under G. To obtain a

simple notation for the elements of G, we number the faces of

the icosahedron using the numbers 1, 2, 3, 4 and 5 in such a

way that no two adjacent faces are assigned the same number.

The numbering of the faces is given in Fig. 4.

Upon numbering the faces, we can now express the

elements of G using the effect they induce on the numbers on

the faces. For example, the 120� counterclockwise rotation

whose axis passes through the center of the front face labeled

4 and the center of the icosahedron is denoted ð123Þ, since it

sends 1 to 2, 2 to 3 and 3 to 1, while it sends 4 to 4 and 5 to 5.

We now go back to the coloring. For the coloring, we have

H ¼ hð123Þ; ð124Þi = {(1), (12)(34), (13)(24), (14)(23), (123),

(132), (124), (142), (134), (143), (234), (243)}, which is a group

with 12 elements isomorphic to A4. Of the elements of H, three

are half-turns while eight are threefold rotations. The index

of H in G is 10, and the vertices form one H-orbit so that

X ¼ Hx1, where x1 is the vertex at the top indicated in Fig. 4.

We choose Y = {(1), (12345), (13524), (14253), (15432),

ð14Þð23Þ, ð13Þð45Þ, ð12Þð35Þ, ð25Þð34Þ, ð15Þð24Þg, where a bar

above the element indicates composition with the inversion

ð1Þ. The last five elements in Y represent mirror reflections. All

the right coset representatives in Y fix x1.

The coloring is obtained using the partition P =

fhJ1x1 j h 2 Hg, where J1 ¼ hð234Þi. The element ð234Þ is

the 120� rotation whose axis passes through the center of

the face on the right labeled 5 and the center of the

opposite face. The elements of the partition P are given by

P = {J1x1, ð12Þð34ÞJ1x1, ð13Þð24ÞJ1x1, ð14Þð23ÞJ1x1g, where J1x1,

ð12Þð34ÞJ1x1, ð13Þð24ÞJ1x1 and ð14Þð23ÞJ1x1 are assigned,

respectively, the colors red, green, blue and yellow. The

J1-orbit of x1, J1x1, consists of the three points x1, ð234Þx1 and

ð243Þx1, and these points have been colored red in Fig. 1. The

elements ð12Þð34Þ; ð13Þð24Þ and ð14Þð23Þ represent half-turns

or 180� rotations with axes as indicated in Fig. 4. These axes

pass through the center of the icosahedron and are mutually

perpendicular.

In this example, S1 ¼
S

y2Y J1y. To determine if the coloring

is perfect, we check if S1 is a subgroup of G. However, S1 has
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Table 1
The possible Xi’s and the corresponding sufficient and necessary
requirements so that H� ¼ G.

Xi’s H� ¼ G if and only if

X1 ¼ fx1g, S1 � G and
X2 ¼ fx2g, 8y 2 Y2; yS1y�1 ¼ S2

X3 ¼ fx3g, 8y 2 Y3; yS1y�1 ¼ S3

X4 ¼ fx4g 8y 2 Y4; yS1y�1 ¼ S4

X1 ¼ fx1; x4g, S1 � G and
X2 ¼ fx2g, 8y 2 Y2; yS1y�1 ¼ S2

X3 ¼ fx3g 8y 2 Y3; yS1y�1 ¼ S3

X1 ¼ fx1; x4g, S1 � G and
X2 ¼ fx2; x3g 8y 2 Y2; yS1y�1 ¼ S2

X1 ¼ fx1; x3; x4g, S1 � G and
X2 ¼ fx2g 8y 2 Y2; yS1y�1 ¼ S2

X1 ¼ fx1; x2; x3; x4g S1 � G

Figure 4
Numbered faces of the icosahedron.



30 elements. Therefore, S1 cannot be a subgroup of G since G

has no subgroup of order 30. We obtain H� by checking if the

right coset representatives in Y induce a permutation of colors.

We find that only the identity ð1Þ does, so that the color group

H� ¼ H, a subgroup of index 10 in G.

4.2. Regular dodecagon

A regular dodecagon has symmetry group G ¼ ha; bi which

is isomorphic to D12, where a is the 30� counterclockwise

rotation centered at the middle of the dodecagon and b is the

reflection along the vertical line passing through the center, as

shown in Fig. 5. The set X is the set of slices of the dodecagon,

which forms only one G-orbit.

A coloring of the dodecagon is shown in Fig. 6.

H¼fe; a6; b; a6bg, ½G : H�¼6, X¼Hx1 [Hx2 [Hx3 [Hx4.

Y ¼ fe; a3; a2; a; a2b; abg, where a3x1 ¼ x2, a2x1 ¼ x3, ax1 ¼

x4, a2bx1 ¼ x3, abx1 ¼ x4.

P ¼ fhJ1fx1; x4g j h 2 Hg [ fhJ2fx2; x3g j h 2 Hg, where

J1 ¼ fe; bg and J2 ¼ fe; a6bg.

In this example, S1 = J1 [ J1a [ J1ab = fe; a; a11; b; ab; a11bg,

which is not a subgroup of G. Theorem 2 states that for H� to

be equal to G, it is necessary that S1 � G. Therefore, H� 6¼ G.

To get H�, we check the right coset representatives in Y. Of

these, only e and a3 induce a permutation of colors; therefore

H� ¼ H [Ha3, which is an index 3 subgroup of G.

4.3. Cube

A cube has symmetry group G of order 48. Some of its

elements are:

(i) a is the 120� clockwise rotation (when viewed from the

up–left–front vertex) with axis passing through the up–left–

front vertex and the down–right–back vertex.

(ii) b is the 90� clockwise rotation (when viewed from

above) with axis passing through the center of the faces above

and below the cube.

(iii) c is the half-turn with axis passing through the

midpoints of the front-left edge and the back-right edge.

(iv) 1 is the inversion about the center of the cube.

G is isomorphic to S4 
 C2. We will take the set X to be the

set of edges of the cube, which form one orbit under the

symmetry group.

For our coloring (Fig. 7), the color group H� is of index 6

in G.

H ¼ hb; ci ffi D4. We have ½G : H� ¼ 6, X ¼ Hx1 [Hx2.

Y ¼ fe; a; b�1a�1; 1bc; 1b2a; 1cb2a�1g where ax1 ¼ x2,

b�1a�1x1 ¼ x1, 1bcx1 ¼ x1, 1b2ax1 ¼ x2 and 1cb2a�1x1 ¼ x1.

P ¼ fhJ1fx1; x2g j h 2 Hg, where J1 ¼ fe; cg.

For this example, we have S1 ¼
S

y2Y J1y. S1 has 12

elements, two of which are a and b�1a�1. However, the

product b�1a�1 � a ¼ b�1 is not an element of S1. Hence, S1 is

not a subgroup of G. But theorem 2 tells us that S1 should be a

subgroup of G for H� to be equal to G. Thus, H� 6¼ G. To find

H�, we take a look at the right coset representatives in Y.

Among these, only the identity e induces a permutation of

colors, so that the color group is H.

4.4. Planar tiling

Here we consider a tiling of the plane with symmetry group

G ¼ hx; y; ai, where x and y are translations, while a is a half-

turn with indicated center, as shown in Fig. 8. The group G is a

plane crystallographic group of type p2 or 2222 in orbifold

notation. The set X is the set of tiles (angels) in the tiling.

For the first coloring (Fig. 9), the color group H� is G.

H ¼ hx5; x2y; ai. H is also of type p2, ½G : H� ¼ 5,

X ¼ Hx1 [Hx2 [Hx3 [Hx4 [Hx5.

Y ¼ fe; x; x�1; x3a; x2ag, where xx1 ¼ x2, x�1x1 ¼ x3,

x3ax1 ¼ x4 and x2ax1 ¼ x5.
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Figure 5
The symmetry group G ¼ ha; bi ffi D12 of the regular dodecagon.

Figure 6
Colored regular dodecagon slices with color group H� of index 3 in G.

Figure 7
Colored cube edges with color group of index 6 in G.

Figure 8
The symmetry group G ¼ hx; y; ai of type p2 or 2222.



P = fhJ1fx1; x5g j h 2 Hg [ fhJ2fx2; x4g j h 2 Hg [

fhJ3x3 j h 2 Hg, where J1 ¼ hx
5; x2yi, J2 ¼ hx

5; x2yi and

J3 ¼ hx
5; x2y; ai ¼ H. Here, fhJ1fx1; x5g j h 2 Hg represents

the red and violet angels, fhJ2fx2; x4g j h 2 Hg represents the

blue and yellow angels, while fhJ3x3 j h 2 Hg is for the green

angels.

In this example, S1 ¼ J1 [ J1x2a, S2 = J2xx�1 [ J2x3ax�1 =

J2 [ J2x4a and S3 ¼ J3. We have S1 � G, xS1x�1 ¼ S2,

x�1S1x ¼ S3 and ðx3aÞS1ðx
3aÞ�1

¼ S2. Thus, from theorem 2,

we have H� ¼ G.

For the second coloring (Fig. 10), the color group H� is H,

and is of index 5 in G.

H ¼ hx5; x2y; ai. H is also of type p2, ½G : H� ¼ 5,

X ¼ Hx1 [Hx2 [Hx3 [Hx4 [Hx5.

Y ¼ fe; x; x�1; x3a; x2ag, where xx1 ¼ x2, x�1x1 ¼ x3,

x3ax1 ¼ x4 and x2ax1 ¼ x5.

P = fhJ1x1 j h 2 Hg [ fhJ2x2 j h 2 Hg [ fhJ3x3 j h 2 Hg

[ fhJ4x4 j h 2 Hg [ fhJ5x5 j h 2 Hg, where J1 ¼ H, J2 ¼ H,

J3 ¼ hx
5; x2yi, J4 ¼ hx

5; x2yi and J5 ¼ hx
5; x4y2; ai. There are

eight colors in this coloring. The set fhJ1x1 j h 2 Hg gives us

the yellow angels, fhJ2x2 j h 2 Hg gives us the pink angels,

while fhJ3x3 j h 2 Hg gives us two colors, green and red. The

set fhJ4x4 j h 2 Hg also gives us two colors, blue and orange,

and finally, fhJ5x5 j h 2 Hg gives us the colors gray and violet.

In this example, Si ¼ Ji for i ¼ 1; 2; 3; 4; 5. However, x�1J1x

cannot be equal to J3, since J1 contains a half-turn, while J3

does not, and thus they cannot be conjugate subgroups. But

x�1 2 Y3 since x�1x1 ¼ x3. Therefore, we have found an

element y 2 Y3 which does not satisfy yS1y�1 ¼ S3. Conse-

quently, from theorem 2, we have H� 6¼ G, and so H� ¼ H.

4.5. Hyperbolic plane tiling

Next, we consider a tiling of the hyperbolic plane. The

symmetry group of the tiling is G ¼ hP;Q;Ri where P, Q and

R are reflections with mirror axes shown in Fig. 11. The group

G is a triangle group of type *542 generated by reflections on

the sides of a triangle with interior angles �=5, �=4 and �=2.

The set X is the set of hyperbolic triangles in the tiling.

For our coloring, we consider the subgroup H ¼

hP;Q;RPR;RQRPRQRi of index 5 in G. The axes of the

reflections RPR and RQRPRQR are also indicated in Fig. 11,

along with the representatives for the five H-orbits of X.

For this example, the set Y of right coset representatives

is given by Y ¼ fe;R;RQ;RQR;RQRQg, where Rx1 ¼ x2,

RQx1 ¼ x3, RQRx1 ¼ x4 and RQRQx1 ¼ x5.

We now present a coloring whose color group is H.

We use the partition P = fhJ1x1 j h 2 Hg [ fhJ2x2 j h 2 Hg

[ fhJ3x3 j h 2 Hg [ fhJ4x4 j h 2 Hg [ fhJ5x5 j h 2 Hg, where

each of the Ji’s is equal to H. For i ¼ 1; 2; 3; 4; 5, we have

Si ¼ Ji ¼ H.

To determine the color group, we take a look at the right

coset representative R. Note that R is a reflection, so that

R�1 ¼ R. Since Rx1 ¼ x2, we have R 2 Y2. Thus, we should

have RS1R ¼ S2 for the coloring to be perfect, according to

theorem 2. However, consider Q 2 S1. The element RQR

cannot be an element of S2, since S2 ¼ H and RQR is in the
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Figure 10
Colored tiling with color group of index 5 in G.

Figure 11
The symmetry group G ¼ hP;Q;Ri and its subgroup H ¼
hP;Q;RPR;RQRPRQRi.

Figure 9
Colored tiling with color group G.



coset HRQR, which is not equal to H. Hence, H� 6¼ G, and so

H� ¼ H. The coloring appears in Fig. 12.

4.6. Six-pointed star

The six-pointed star in Fig. 13 has symmetry group

G ¼ ha; bi isomorphic to D6, the dihedral group with 12

elements. Here, a is the 60� counterclockwise rotation

centered at the middle of the star, while b is the reflection

whose axis is the horizontal line passing through the middle of

the star. The set X of objects to be colored is the set of vertices

of the star. This set forms two G-orbits. The first G-orbit is the

set of outer vertices, while the second G-orbit is the set of

inner vertices. We write X ¼ Gv [Gx, where v and x are the

vertices indicated in Fig. 13.

To color the vertices according to our framework, we need

to color each G-orbit separately. For each of the following

colorings, we have H ¼ G and J ¼ ha3; bi. Note that H ¼ G

implies Y ¼ feg.

The first coloring is a perfect coloring. The outer vertices

are colored using the partition Po = fhJv j h 2 Hg =

fJv; aJv; a2Jvg, where Jv is colored green, aJv is red and a2Jv is

blue. Meanwhile, the inner vertices are colored using Pi =

fhJx j h 2 Hg = fJx; aJx; a2Jxg, where Jx is green, aJx is red

and a2Jx is blue. For both Po and Pi, it is clear that H� ¼ G

since H ¼ G and H� is a subgroup of G which contains H. In

other words, both Po and Pi induce perfect colorings of their

respective G-orbits. When combined into a single figure (Fig.

14), the vertices of the star become perfectly colored.

We now proceed to the second coloring. For this coloring,

we make use of the same Po and Pi, except that, in this

example, we color aJx with blue and a2Jx with red. Since we

used the same partitions, both the outer and inner vertices are

still perfectly colored. However, when we combine them into a

single figure (Fig. 15), we do not get a perfect coloring.

Instead, the color group of the coloring is fe; a3; b; a3bg, which

is of index 3 in G.

For the third coloring, we again make use of the same

partitions Po and Pi as in the first coloring. We also color the

inner vertices in exactly the same manner as in the first

example, but we color the outer vertices differently. Here, we

color Jv red, aJv is blue while a2Jv is colored green. Again,

both the outer and inner vertices are perfectly colored, but

when combined into one figure (Fig. 16), we fail to get a

perfect coloring. Instead, we see that the color group is the

subgroup generated by a, which is of index 2 in G.
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Figure 13
A six-pointed star with symmetry group G isomorphic to D6.

Figure 15
A coloring of the vertices of the six-pointed star with color group of index
3 in G.

Figure 16
A coloring of the vertices of the six-pointed star with color group of index
2 in G.

Figure 12
Colored hyperbolic tiling with color group of index 5 in G.

Figure 14
A perfect coloring of the vertices of the six-pointed star.



These examples stress the importance of the requirement

that the symmetry group G should act transitively on the set of

objects to be colored for us to be able to use theorem 2. For

colorings of sets that form more than one G-orbit, the best

that the theorem can do is obtain the color group of each

G-orbit, and not the coloring as a whole. Furthermore, the

second and third examples illustrate that it is not always

enough to simply take the intersection of the color groups we

obtained for each G-orbit to get the color group of the whole

figure.

In general, if there is no color sharing between G-orbits, it is

enough to find the intersection of the color groups of each

G-orbit to get the color group of the entire coloring. However,

when there is color sharing between G-orbits, there are

instances when it is not enough to just take the intersection of

the color groups of the G-orbits.

5. Conclusion and recommendations

In this paper, we constructed colorings of symmetrical

patterns where the color group always contains a chosen

subgroup H of the symmetry group G. The main result gives us

a framework for determining the color groups of the colorings.

Using this framework, we have obtained the color groups of

different colorings and we have seen how the indices of these

color groups in the symmetry group G vary from coloring to

coloring.

We were able to formulate theorem 2, which completely

solves the problem of finding the color group when the index

of H in G is prime. Unfortunately, when the index of H in G is

not prime, the computations in the framework become

tedious, especially when the index becomes large. This is due

to the possible existence of intermediate subgroups between

H and G. Further research is necessary to simplify the

framework for the case when the index of H in G is not prime.

Through the latter examples, we have seen the importance

of the restriction that G should act transitively on the set of

objects being colored. We observed that, in general, it is not

enough to simply take the intersection of the color groups

obtained for each of the G-orbits. Methods for obtaining color

groups of colorings where the symmetry group does not act

transitively on the set of objects to be colored could be a good

topic for research.

Another possible research topic is the color-fixing group of

the coloring. It is beyond the scope of this paper, but the main

theorem, or more specifically the proof, might give some clues

on how to identify this group. Recall that the Si’s are stabi-

lizers of some specific color (e.g. S1 is the stabilizer of the color

J1X1), so these stabilizers might prove useful in the study of

the color-fixing group.

Finally, the question of equivalence of colorings obtained

using this framework should be of interest, as two colorings

with the same color group need not be equivalent.
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